Skip to content


Here we list scientific articles and books (or book chapters) from our researchers since early 2022. We are proud that most of our researchers regularly publish in traditionally reputable journals in physics and chemistry literature such as Physical Review, Journal of Physical Chemistry, Materials Today, Journal of High Energy Physics, European Physical Journals, and many others.

Note: We exclude publications from the ALICE collaboration (in which two of our researchers are its members) and from conference proceedings because otherwise, the list on this page will be exhaustive.

Papers in International Journals


  1. A. Rohim, A. S. Adam, K. Yamamoto, “Massive fermion between two parallel chiral plates”, Prog. Theor. Exp. Phys. 172, 013B05 (2023).
  2. H. Sudrajat, A. Susanti, and S. Hartuti, “Reduced TiO2 with prolonged electron lifetime for improving photocatalytic water reduction activity”, J. Phys. Condens. Matter 35, 134001 (2023).
  3. F. Oemry, I. B. Adilina, W. T. Cahyanto, N. Rinaldi, F. Aulia, A. Jackson, S. F. Parker, A. B. Kronerf, and E. J. Shotton, “Experimental and computational studies of sulfided NiMo supported on pillared clay: catalyst activation and guaiacol adsorption sites”, Phys. Chem. Chem. Phys. 25, 2978 (2023).
  4. E. P. Sinaga, M. P. Adams, M. Bersweiler, L. G. Vivas, E. H. Hasdeo, J. Leliaert, P. Bender, D. Honecker, and A. Michels, “Micromagnetic simulation of neutron scattering from spherical nanoparticles: Effect of pore-type defects”, Phys. Rev. B. 107, 014416 (2023).
  5. H. Sudrajat and A. Susanti, “Critical Role of the NiO–Ni(OH)2 Species Loaded Onto TiO2 Photocatalyst in the Enhancement of H2 Evolution Activity”, J. Electrochem. Soc. 170, 016504 (2023).


  1. A. Sasahara, K. Kimura, H. Sudrajat, N. Happo, K. Hayashi, and H. Onishi, “KTaO3 Wafers Doped with Sr or La Cations for Modeling Water-Splitting Photocatalysts: 3D Atom Imaging around Doping Cations”, J. Phys. Chem. C 126, 19745 (2022).
  2. R. Muslim, S. A. Wella, and A. R. T. Nugraha, “Phase transition in the majority rule model with the nonconformist agents”, Physica A 608, 128307 (2022).
  3. J. Suwardy, M. P. A. Akhir, R. Kurniawan, B. R. Hermanto, I. Anshori, and M. H. Fauzi, “Simulation of Laser-Heating and Energetic Plasma Plume Expansion in Pulsed Laser Deposition of Y3Fe5O12“, Micromachines 13, 2012 (2022).
  4. M. S. Ukhtary, E. H. Hasdeo, A. B. Suksmono, and A. R. T. Nugraha, “Long-lived qubit entanglement by surface plasmon polaritons in a Weyl semimetal”, Phys. Rev. B. 106, 155409 (2022).
  5. A. Darmawan, E. Suprayoga, A. A. AlShaikhi, and A. R. T. Nugraha, “Thermoelectric properties of two-dimensional materials with combination of linear and nonlinear band structures”, Mater. Today Commun. 33, 104596 (2022).
  6. J. Julio, S. Saad, and A. Thapa, “Marriage between neutrino mass and flavor anomalies”, Phys. Rev. D 106, 055003 (2022).
  7. J. Julio, S. Saad, and, A. Thapa, “A flavor-inspired radiative neutrino mass model”, J. High Energy Phys. 2022, 270 (2022).
  8. E. S. Fadhilla, B. E. Gunara, and A. N. Atmaja, “BPS skyrmions of generalized Skyrme model in higher dimensions”, J. High Energy Phys. 2022, 260 (2022).
  9. Y. Tian, M. S. Ukhtary, and R. Saito, “Switching performance of optically generated spin current at the graphene edge”, Phys. Rev. B 106, 045420 (2022).
  10. A. N. Atmaja, “Are there BPS dyons in the generalized SU(2) Yang–Mills–Higgs model?” Eur. Phys. J. C 82, 602 (2022).
  11. A. B. Cahaya, R. M. Sitorus, A. Azhar, A. R. T. Nugraha, and M. A. Majidi, “Enhancement of spin mixing conductance by s-d orbital hybridization in heavy metals”, Phys. Rev. B 105, 214438 (2022).
  12. M. S. Muntini, E. Suprayoga, S. A. Wella, I. Fatimah, L. Yuwana, T. Seetawan, A. B. Cahaya, A. R. T. Nugraha, and E. H. Hasdeo, “Spin-tunable thermoelectric performance in monolayer chromium pnictides”, Phys. Rev. Mater. 6, 064010 (2022).
  13. Y. Hamamoto, H. Sawada, S. A. Wella, K. Inagaki, I. Hamada, and Y. Morikawa, “Hybridization-Induced Image Potential States with Large Effective Mass in Lead Phthalocyanine Overlayers on Graphene”, J. Chem. Phys. C 26, 10855 (2022).
  14. J. M. Adhidewata, A. R. T. Nugraha, E. H. Hasdeo, P. Estellé, and B. E. Gunara, “Thermoelectric properties of semiconducting materials with parabolic and pudding-mold band structures”, Mater. Today. Commun. 31 103737 (2022).
  15. A. Habibi, A. Z. Musthofa, E. Adibi, J. Ekström, T. Schmidt, and E. H. Hasdeo, “Kerr and Faraday rotations in topological flat and dispersive band structures”, New J. Phys 24, 063003 (2022).
  16. P. Lubis, N. Amalia, S. A. Wella, and Sholihun, “Thermoelectric Properties of Monolayer and Bilayer Buckled XTe (X= Ge, Sn, and Pb)”, Adv. Nat. Sci.: Nanosci. Nanotechnol. 13, 025008 (2022).
  17. R. Muslim, M. J. Kholili, and A. R. T. Nugraha, “Opinion dynamics involving contrarian and independence behaviors based on the Sznajd model with two-two and three-one agent interactions”, Physica D 439, 133379 (2022).
  18. H. Haryadi, E. Suprayoga, and E. Suhendi, “An Analysis of Electronic Properties of LaFeO3 using Density Functional Theory with Generalized Gradient Approximation-Perdew-Burke-Ernzerhof Method for Ethanol Gas Sensors”, Mater. Res. 25, e20210554 (2022).
  19. N. T. Hung, J. M. Adhidewata, A. R. T. Nugraha, and R. Saito, “Enhanced Thermoelectric Performance by van Hove Singularities in the Density of States of Type-II Nodal-line Semimetals)”, Phys. Rev. B 105, 115142 (2022).
  20. R. Primulando, J. Julio, and P. Uttayarat, “Zee model with quasidegenerate neutrino masses and where to find it”, Eur. Phys. J. C 82, 253 (2022).
  21. M. Handayani, Y. Mulyaningsih, M. A. Anggoro, A. Abbas, I. Setiawan, F. Triawan, N. Darsono, Y. N. Thaha, I. Kartika, G. K. Sunnardianto, I. Anshori, and G. Lisak, “One-pot Synthesis of Reduced Graphene Oxide/chitosan/zinc Oxide Ternary Nanocomposites for Supercapacitor Electrodes with Enhanced Electrochemical Properties”, Mater. Lett. 314, 131846 (2022).
  22. K. Wijaya, R. A. Pratika, E. R. Fitri, P. Fadilah, Y. Candrasasi, W. D. Saputri, S. Mulijani, A. Patah, A. C. Wibowo, “Effect of Sulfation on Physicochemical Properties of ZrO2 and TiO2 Nanoparticles”, Korean J. Mater. Res. 32, 125 (2022).
  23. S. Gea, Y. A. Hutapea, A. F. R. Piliang, A. N. Pulungan, R. Rahayu, J. Layla, A. D. Tikoalu, K Wijaya, and W. D. Saputri, “A Comprehensive Review of Experimental Parameters in Bio-oil Upgrading from Pyrolysis of Biomass to Biofuel Through Catalytic Hydrodeoxygenation”, BioEnergy Research (2022).
  24. W. D. Saputri, H. D. Pranowo, and T. S. Hofer, “Can’t We Negotiate the Importance of Electron Correlation? HF vs RIMP2 in Ab Initio Quantum Mechanical Charge Field Molecular Dynamics Simulations of Cu+ in Pure Liquid Ammonia”, J. Mol. Liq. 347, 118286 (2022).
  25. Y. Hayafuchi, R. Konno, A. Noorhidayati, M. H. Fauzi, N. Shibata, K. Hashimoto, and Y. Hirayama, “Even-denominator fractional quantum Hall state in conventional triple-gated quantum point contact”, Appl. Phys. Express 15, 025002 (2022).
  26. A. Setiawan, I. P. Handayani, and E. Suprayoga, “Uniaxial Strain-induced Electronic Property Alterations of MoS2 Monolayer”, Adv. Nat. Sci.: Nanosci. Nanotechnol. 12, 045016 (2022).
  27. A. S. Adam, Y. Kawamura, and T. Morozumi, “A model with light and heavy scalars in view of the effective theory”, Prog. Theor. Exp. Phys. 2002, 013B01 (2022).
  28. H. Harfah, Y. Wicaksono, G. K. Sunnardianto, M. A. Majidi, and K. Kusakabe, “High Magnetoresistance of a Hexagonal Boron Nitride–Graphene Heterostructure-based MTJ through Excited-electron Transmission”, Nanoscale Adv. 4, 117 (2022).

Books/Book Chapters

  1. N. T. Hung, A. R. T. Nugraha, and R. Saito, “Quantum ESPRESSO Course for Solid-State Physics”, Jenny Stanford Publishing, New York, 2022.
  2. M. H. Fauzi and Y. Hirayama, “Hyperfine-Mediated Transport in a One-Dimensional Channel”, In: Hirayama, Y., Hirakawa, K., Yamaguchi, H. (eds) Quantum Hybrid Electronics and Materials. Springer, Singapore, 2022.